

Automating the Process of Invention

Fast Pitch

Program Director: David Tew, Ph.D.

Advanced Research Projects Agency – Energy (ARPA-E)

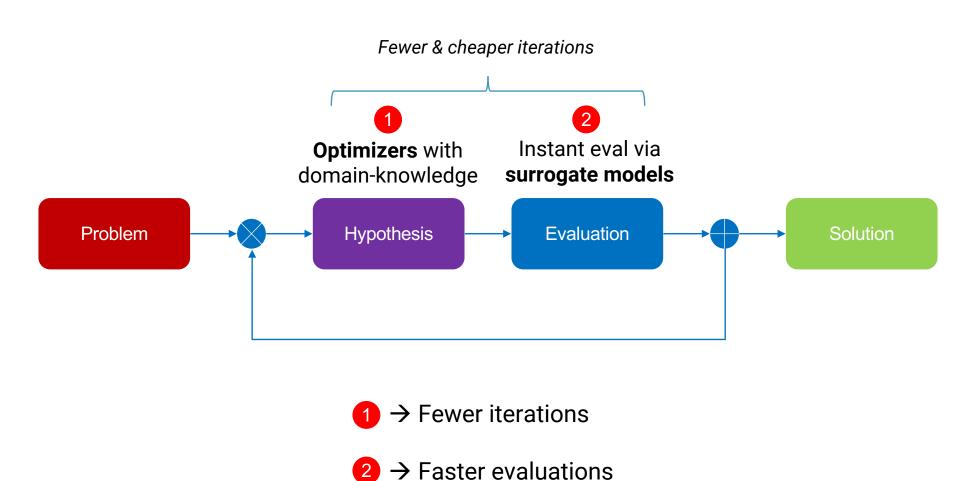
Automating the Process of Invention

By leveraging the transformational potential of machine learning (ML)

Today's Focus: Progress, Challenges & Potential Next Steps

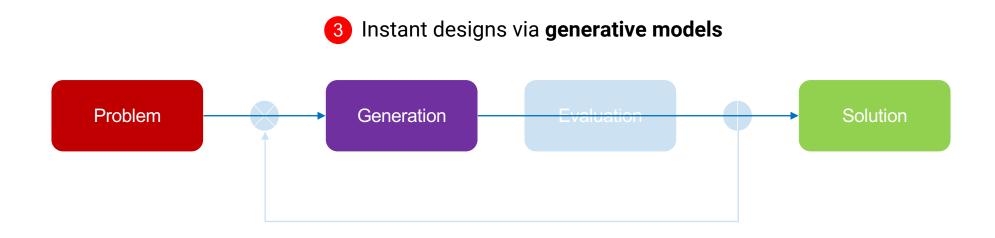
Design Process Framework & Targeted Capabilities

Goal: Develop better technologies faster



Design Process Framework & Targeted Capabilities

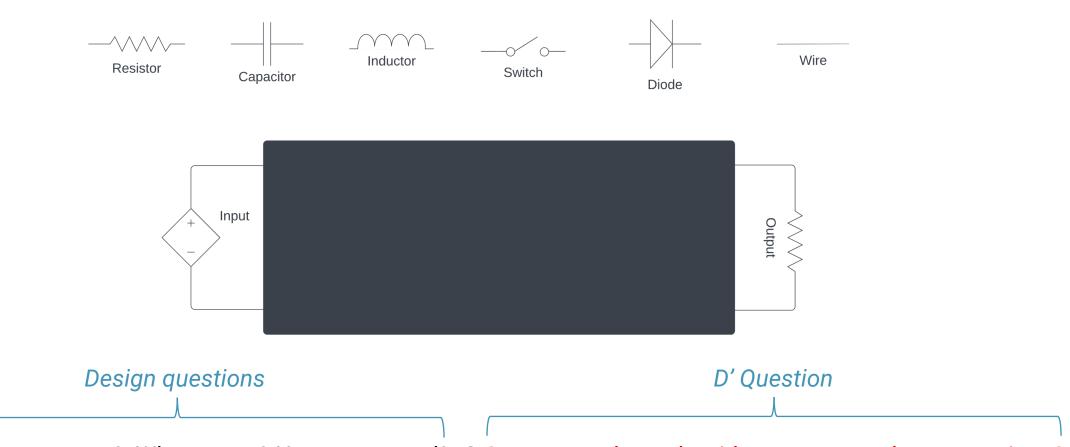
Goal: Develop better technologies faster



3 → Get it right the first time

Progress: Domain Expert Optimizers

D' Focus Area: Combinatorial optimization of thermodynamic systems, <u>electrical circuits</u>, materials



Which components? What specs? How connected? → Can we teach an algorithm to answer these questions?

Circuit Design via Reinforcement Learning (RL)

Learning Process

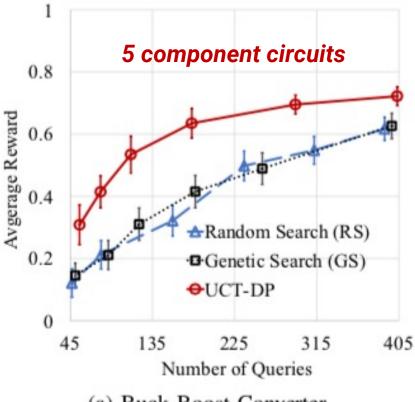
- Build & evaluate many circuit concepts
 - Components
 - Connections (Wires)
 - Controls (Switch Timing)
- RL algorithms learn to maximize "reward"
 - EfficiencyCost

Cost

NPV

Examples

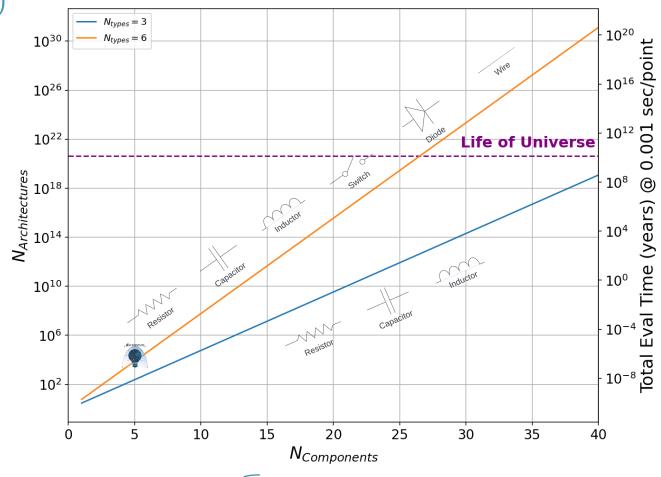
RL (UCT-DP) vs SOA



(a) Buck-Boost Converter

Enormous design space. Most choices are bad.

 $N_{architectures} = (N_{types})^{N_{components}}$



- Learn to make good choices
- Efficiently weed out bad ones

Emerging Complexity Management Solutions

Goal: Reduce cost/amount of training data

- Leverage existing knowledge
 - Rules to enable rapid disposition of 'bad' ideas (e.g., no short circuits)
 - Structured algorithms (e.g., GNNs) that respect physics & architectures
- Leverage existing data
 - Historical data (good & bad)
 - Previously trained (NN) algorithms (transfer learning)
- Focus on what's important
 - Dimensionality reduction

Takeaways

- ML methods offer potential for attractive design value propositions
 - Domain expert optimizers
 - Surrogate models
 - Generative/inverse models

- Challenge is management of 'real-world-scale' complexity
 - Leverage physics to simplify ML representations & reduce training cost
 - Learn when/how to transfer knowledge between applications/tools

— ...

► Ideas? Please reach out: <u>david.tew@hq.doe.gov</u>

